
The MULTI Process Challenge – EMISAJ Special Issue Version

João Paulo A. Almeida∗, Thomas Kühne†, Adrian Rutle‡ and Manuel Wimmer§
∗Federal University of Espírito Santo, Vitória, Brazil
†Victoria University of Wellington, New Zealand

‡Western Norway University of Applied Sciences, Bergen, Norway
§Johannes Kepler University Linz, Austria

jpalmeida@ieee.org, tk@ecs.vuw.ac.nz, Adrian.Rutle@hvl.no, manuel.wimmer@jku.at

Abstract—This challenge is intended to allow the demonstration
of multi-level modeling techniques and enable the comparison
of submissions, and hence framework/language capabilities.
The multi-level modeling community is invited to respond
to this challenge with submissions describing solutions to the
challenge expressed in a technology of their choosing. Authors
should emphasize the merits and limitations of their solution
according to the criteria defined in this challenge description.
This challenge closely follows the MULTI 2019/2020 Process
Challenge with minor changes to Sections 1 and 3, and adds
more specific presentation requirements.

Index Terms—Multi-level modeling, challenge, process man-
agement, MULTI workshop.

1. Introduction

Multi-level modeling (MLM) represents a significant ex-
tension to the traditional two-level object-oriented paradigm
with the potential to improve upon the utility, reliability
and complexity of models. In contrast to conventional ap-
proaches, MLM allows for an arbitrary number of classi-
fication levels and introduces further concepts that foster
expressiveness, reuse and adaptability.

The modeling challenge described here is intended as a
basis for demonstrating MLM capabilities and enabling the
comparison of MLM alternatives. The challenge description
closely follows the MULTI 2019/2020 Process Challenge [3]
which in turn was inspired by the MULTI Bicycle Challenge
used in MULTI 2017 [1] & MULTI 2018 [2]. Despite
similarities in the criteria between the bicycle and process
challenges, the subject domain has been changed entirely
and new criteria have been added which are intended to
increase opportunities for languages and tools to exercise
their capabilities.

This challenge concerns the domain of process man-
agement [4], a domain in which one is not only interested
in particular occurrences (i.e., “processes” = “process in-
stances”, “tasks” = “task occurrences”), but also in universal
aspects of classes of occurrences (“process types”, “task
types”) and their relations to actor types and artifact types.
Furthermore, so-called process metamodelling can be used
to classify this universal level in turn.

This challenge is intended to elicit submissions which
demonstrate how MLM technology can deal with such a
multi-level domain. For example, domain-specific concepts
may be defined in their dedicated branches of a hierarchy
of models without polluting the general terminology of
process management, allowing domain-specific behaviour to
be defined for each branch of the hierarchy while allowing
for the reuse/enforcement of common structure/behaviour.

Each submission will be reviewed against the following
criteria: (i) Does the submission address the established
domain as described in Section 2 and demonstrate the use
of multi-level features? Note that it is not required to satisfy
all requirements listed in Section 2, however any omissions
should be flagged and discussed. (ii) Does it evaluate/discuss
the proposed modeling solution against the criteria presented
in Section 3? (iii) Does it discuss the merits and limita-
tions of the applied MLM technique in the context of the
challenge? Authors may suggest further requirements that
clearly demonstrate the utility of their chosen approach.

Submitters should either include a complete solution in
the form of a model as part of their submission or alter-
natively provide a supplementary artifact which completely
details their solution using a standard format, such as PDF.

The proposed solution should be presented in an article
with at least the following sections:

1) Technology (precise description of the technology /
approach that is used);

2) Analysis (any disambiguations of the case description
and assumptions made, any potentially added require-
ments);

3) Model Presentation (detailed presentation of a model,
including justifications for design decisions);

4) Satisfaction of Requirements (demonstration of how the
solution satisfies the challenge requirements);

5) Assessment of the Modeling Solution (discussing
choices made, pointing out potential compromises /
deficiencies);

6) Related Work (positioning and contrasting the pre-
sented solution with related work);

7) Conclusions (including lessons learned, impulses for
future work, etc.).



2. Case description

This MLM challenge involves representing universal
properties of process types along with task types, artifact
types, actor types and their various relations and attributes
(Section 2.2), and an application of this conceptualization
in the scope of a particular software engineering process
(Section 2.3). Submitted solutions should include bottom-
level instances, at least for key types, exemplifying all
attributes mentioned in the challenge description. Deviations
from the case as described here should be documented in
submissions. The case description may be extended but
respective rationales should then be provided.

2.1. Overview

Process management is characterized by the prescription
of rules concerning the execution of certain types of pro-
cesses, tasks, actions or activities. It therefore involves reg-
ulating and keeping track of processes, i.e, the enactments
of process types, with such process enactments often being
referred to as “process instances” in the process management
literature. For example, in the software engineering domain,
it may be necessary to keep track of the results of certain
tasks such as testing, e.g., the fact whether or not code
has been tested, etc. Further rules impose requirements on
the participation of business actors (humans, organizations)
and artifacts (equipment, documents, tools) in certain tasks
and specifies dependencies. For example, in the software
engineering domain: (i) testing requires prior test case de-
sign; (ii) test case design is performed by a senior analyst,
employs a requirements specification, and results in test
cases; and (iii) testing is performed by a tester, employs
test cases, and produces a test report.

In other contexts, such as the insurance domain, there
may be a need to keep track of which policy holder submit-
ted an insurance claim, when it was submitted, which claims
analyst authorized payment of the insurance premium in
response to the claim, how much was claimed, which claims
are still pending assessment, how much was paid out for a
particular claim, etc.

Submissions to the challenge should focus on the soft-
ware engineering domain. They may optionally include the
insurance domain as well. In the following, we are using
the insurance domain for illustrative purposes only.

2.2. Processes, tasks, actors and artifacts

The following general rules pertaining to processes,
tasks, actors and artifacts apply for the challenge:
P1) A process type (such as claim handling) is defined by

the composition of one or more task types (receive
claim, assess claim, pay premium) and their relations.

P2) Ordering constraints between task types of a process
type are established through gateways, which may be
sequencing, and-split, or-split, and-join and or-join.

P3) A process type has one initial task type (with which all
its executions begin), and one or more final task types
(with which all its executions end).

P4) Each task type is created by an actor, who will not
necessarily perform it. For example, Ben Boss created
the task type assess claim.

P5) For each task type, one may stipulate a set of actor
types whose instances are the only ones that may
perform instances of that task type. For example, in
the XSure insurance company, only a claim handling
manager or a financial officer may authorize payments.

P6) A task type may alternatively be assigned to a particular
set of actors who are authorized (e.g., John Smith and
Paul Alter may be the only actors who are allowed to
assess claims).

P7) For each task type (such as authorize payment) one
may stipulate the artifact types which are used and
produced. For example, assess claim uses a claim and
produces a claim payment decision.

P8) Task types have an expected duration (which is not
necessarily respected in particular occurrences).

P9) Critical task types are those whose instances are critical
tasks; each of the latter must be performed by a senior
actor and the artifacts they produce must be associated
with a validation task.

P10) Each process type may be enacted multiple times.
P11) Each process comprises one or more tasks.
P12) Each task has a begin date and an end date. (e.g.,

Assessing Claim 123 has begin date 01-Jan-19 and end
date 02-Jan-19).

P13) Tasks are associated with artifacts used and produced,
along with performing actors.

P14) Every artifact used or produced in a task must instan-
tiate one of the artifact types stipulated for the task
type.

P15) An actor may have more than one actor type (e.g.,
Senior Manager and Project Leader.)

P16) Likewise, an artifact may have more than one artifact
type.

P17) An actor who performs a task must be authorized for
that task. Typically, a class of actors is automatically
authorized for certain classes of tasks.

P18) Actor types may specialize other actor types in which
case all the rules that apply to instances of the spe-
cialized actor type must apply to instances of the
specializing actor type. For example, if a manager is
allowed to perform tasks of a certain task type, so is a
senior manager.

P19) All modeling elements, at all levels, must have a last
updated value of type time stamp. This feature should
be defined as few times as possible, ideally only once.
Respective definitions are exempt from the requirement
to have a last updated value. Note that this requirement
differs from the respective version in [3].

Note that it is not necessary for every type in the model
to have an instance. It is useful, however, to illustrate the
design with a number of instances.



2.3. Software engineering process

An application of the above described process manage-
ment must be defined to capture domain-specific aspects
of software engineering processes in the fictional Acme
Software Development Company1. The Acme software devel-
opment process is composed of: requirements analysis, de-
sign, coding, test case design, test design review and testing
(conforming to the constraints indicated in Figure 1, where
the bars represent an and-split and an and-join respectively).

Figure 1. The Acme software engineering process.

The following rules for the software engineering domain
apply:
S1) A requirements analysis is performed by an analyst and

produces a requirements specification.
S2) A test case design is performed by a developer or

test designer and produces test cases. Note that this
requirement from [3] conflicts with S13. We have
maintained it here for the record but ask submitters to
let the information in S13 override S2, i.e. only senior
analysts may perform a test case design. Note that test
case designs still produce test cases.

S3) An occurrence of coding is performed by a developer
and produces code. It must furthermore reference one
or more programming languages employed.

1. As mentioned before, an additional incorporation of the insurance
domain is purely optional.

S4) Code must reference the programming language(s) in
which it was written.

S5) Coding in COBOL always produces COBOL code.
S6) All COBOL code is written in COBOL.
S7) Ann Smith is a developer; she is the only one allowed

to perform coding in COBOL.
S8) Testing is performed by a tester and produces a test

report.
S9) Each tested artifact must be associated to its test report.

S10) Software engineering artifacts have a responsible actor
and a version number. This applies to requirements
specification, code, test case, test report, but also to
any future types of software engineering artifacts.

S11) Bob Brown is an analyst and tester. He has created all
task types in this software development process.

S12) The expected duration of testing is 9 days.
S13) Designing test cases is a critical task which must be

performed by a senior analyst. Test cases must be
validated by a test design review.

3. Solution presentation requirements

Submissions responding to the challenge should describe
a multi-level model conforming to the case description,
including justifications for non-trivial design decisions. In
order to foster comparability between solutions, respondents
are asked to make sure that concepts of the case description
are explicitly represented by one or more model elements.
Conformance of the model elements to each of the re-
quirements (P1–P19 and S1–13) must be documented in a
dedicated section of the article.

3.1. Mandatory discussion aspects

Challenge respondents must discuss their multilevel
model solution with regard to the following aspects, each
of which should be treated in a specific sub-section of the
“Assessment” section of the article:

– Basic modeling constructs: Explain the basic model-
ing constructs used in the solution.

– Levels (or other model content organization schemes
employed): Explain the nature of “levels” in the model,
how model elements are arranged on these levels and
which relationships (such as “instance-of”) may feature
between elements at different levels. The nature of
levels should be captured by explicitly stating the level
segregation and the level cohesion principles used [5].
Avoid vague language such as “higher level concepts
are more abstract” if the inter-level relationship is more
specific. If the inter-level relationship is deliberately
allowed to be vague, state this explicitly.

– Number of levels: Elaborate whether the submitted
solution could have had more or fewer levels and
explain how any potentially existing degrees of freedom
were resolved.

– Cross-level relationships: Discuss if and how associa-
tions and links can connect model elements at different
levels. State well-formedness constraints, if any apply.



– Cross-level constraints: Discuss if and how constraints
can span multiple levels, especially with regard to
cross-level relationships.

– Integrity mechanisms: Discuss how the integrity of
level contents is preserved when changes to level con-
tents occur.

– Deep characterization: Discuss if and how higher
levels influence elements at lower levels with a level
distance of two or more. Such an influence may be
desired to ensure properties of lower level elements
regardless of the design choices that modelers make
at intermediate levels, including future extensions to
intermediate levels.

– Generality: Discuss the generality of the solution. Is
(part of) it applicable to other domains? Does it embody
invariant principles of the domain(s) it covers with
minimal redundancy?

– Extensibility: Elaborate how the solution would re-
spond to further requirements, such as further special
tasks that must be taken care of by special actors.
Identify expected extension points in the solution, e.g.,
subtyping opportunities. If level insertion is a possibil-
ity in your chosen approach, explain how it would be
performed.

Solutions should discuss the aspects listed above with
respect to related work.

Submissions may reference prior publications for tech-
nical details but should strive to be self-contained regarding
the explanation of the major aspects of the technology they
employ.

3.2. Recommended discussion aspects

Challenge respondents are invited to:
– Indicate whether there are formalisms to establish the

semantics of the MLM technique and/or tools that
support the presented solution.

– Discuss model verification (e.g., consistency analyses)
or other quality assessment mechanisms supported by
the MLM technique employed.

4. Conclusions

Submissions should cover:
– Requirements the solution does not address, if any.
– Any extensions that may have been made to the case

description or evaluation aspects.
– Advantages and drawbacks of the presented solution.
– Advantages and drawbacks of the presented MLM ap-

proach that may not be evident in the solution to the
challenge but are worth mentioning.

– Lessons learned and their implications for future work.

Acknowledgments

We would like to thank Ulrich Frank and Tony Clark
who authored the 2017/2018 MULTI challenges for es-
tablishing the format of the challenge, including some of

the general requirements and many of the discussion as-
pects. We would also like to thank Colin Atkinson for
reviewing the challenge and providing feedback. Parts of
the challenge were inspired by a model published in [6].
João Paulo A. Almeida is partly supported by CNPq
(407235/2017-5 and 312123/2017-5) and CAPES Finance
Code 001 (23038.028816/2016-41).

References

[1] “MULTI 2017: 4th International Workshop on Multi-Level Modelling,”
https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/, accessed Jan-
uary 12, 2021.

[2] “MULTI 2018: 5th International Workshop on Multi-Level Modelling,”
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/, accessed Jan-
uary 12, 2021.

[3] J. P. A. Almeida, A. Rutle, M. Wimmer, and T. Kühne, “The MULTI
process challenge,” in 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion,
MODELS Companion 2019, Munich, Germany, September 15-20,
2019, L. Burgueño, A. Pretschner, S. Voss, M. Chaudron, J. Kienzle,
M. Völter, S. Gérard, M. Zahedi, E. Bousse, A. Rensink, F. Polack,
G. Engels, and G. Kappel, Eds. IEEE, 2019, pp. 164–167. [Online].
Available: https://doi.org/10.1109/MODELS-C.2019.00027

[4] M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-
aware Information Systems: Bridging People and Software Through
Process Technology. New York, NY, USA: John Wiley & Sons, Inc.,
2005.

[5] T. Kühne, “A story of levels,” in Proceedings of the MODELS 2018
Workshops co-located with the 21th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS
2018), ser. CEUR Workshop Proceedings, ISSN 1613-0073, vol. Vol-
2245, 2018, pp. 673–682.

[6] J. D. Lara and E. Guerra, “Refactoring multi-level models,” ACM
Trans. Softw. Eng. Methodol., vol. 27, no. 4, pp. 17:1–17:56, Nov.
2018. [Online]. Available: http://doi.acm.org/10.1145/3280985

https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/
https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/
https://doi.org/10.1109/MODELS-C.2019.00027
http://doi.acm.org/10.1145/3280985

